Why we have brain farts, and what scientists are doing to stop them
LatestI was absent-mindedly shoveling cereal into my mouth when the brainfart struck: my hand decided to reroute the incoming spoon’s flight trajectory into my cheek. As I sat there with milk dripping down my chin, my immediate reaction was to blame my hand. But then I realized that my hand had just been following orders. If anyone was to blame here, it was my brain. Turns out that neuroscientists agree with me.
Brain farts, the momentary lapses in attention that strike when you least expect them, may actually be rooted in abnormal patterns of brain activity. Neuroscientists call them “maladaptive brain states.” We spoke to researchers in an emerging field of neuroscience that examines these brain states to learn about the neurological basis of brain farts, their potential evolutionary origins, and how they might one day be a thing of the past.
For a long time, the mistakes caused by brain farts during monotonous tasks were chalked up to momentary, unavoidable fluctuations in brain activity. Consequently, much of the research since the early nineties surrounding human error and brain activity has been focused on how our brains react to mistakes in order to facilitate processes like correction and learning. In contrast, very little attention has been paid to what goes on in our brains in the moments leading up to a mistake.
But a handful of recent studies have demonstrated that what we refer to colloquially as “brain farts” may actually be rooted in a number of so-called maladaptive brain states — unusual neural patterns that emerge when you’re carrying out monotonous or repetitive activities. Signs of these patterns can begin to take shape as many as thirty seconds before a mistake occurs; it is the maladaptive brain state’s emergent quality that has led some scientists to conclude that it may be possible to predict and prevent the elusive brain fart.
How Neuroscientists Catch Brains in the Act (of Farting)
To understand why our brains sometimes fail to properly execute the most straightforward of tasks, neuroscientists need to look at what’s going on in our brains in the seconds leading up to a mistake. To accomplish this, they use imaging techniques like functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and magnetoencephalography (MEG). Redmond O’Connell from Trinity College Institute of Neuroscience in Dublin explained how EEG and MEG allow neuroscientists to peek inside our brains:
MEG and EEG are both based on the fact that active neurons generate a tiny electric field. In the case of EEG’s, this electrical activity is picked up on the scalp by placing electrodes there. The activity of individual neurons propagates through the skull onto the scalp, and the activity of large groups of neurons will sum together to produce the jagged line you see on an EEG trace.
The electrical field produced by active neurons also generates a magnetic field, and this can be measured with MEG. Both measures have the advantage of providing a milisecond-by-milisecond index of [what’s going on] in the brain.
Dr. O’Connell went on to explain that the primary advantage of MEG over EEG is that magnetic waves undergo less distortion as they pass through living tissue, which can make it easier to identify what part of the brain the magnetic signal is coming from. The increased spacial precision of MEG comes at a cost, however – it requires significantly more expensive (not to mention larger) machinery (pictured on the left) compared to the recording nets used in EEG (below).
Since different areas of the brain interact with one another to control different actions, being able to identify activity in a specific brain region or regions can be very important. Fortunately, this is something fMRI does very well — even better than MEG. Ali Mazaheri from the UC Davis Center for Mind and Brain explains:
[fMRI] measures the hemodynamic response (change in blood flow) in different brain areas…the basic idea being that the more active the neurons are in a region of the cortex, the more fuel they need to consume. It has a relatively slow time resolution, which means that for an event to reach the cortex and a response to be obtained takes about 5 seconds. In contrast, EEG/MEG have a resolution in the range of milliseconds.
Having said that, fMRI has an extremely nice spatial resolution (i.e. you can identify, within millimeters, where activity is occurring in the brain), and it’s also nicer for studying network brain activity (i.e. how different regions of the brain are interacting).
The Neurological Basis of Brain Farts
Back in 2007, Dr. Tom Eichele, a researcher at the University of Bergen in Norway, used fMRI to spy on the brains of volunteers as they performed a monotonous task. This task was designed to mimic the repetitive behavior that tends to give rise to brain farts. Dr. Eichele and his colleagues made two surprising, and seemingly counterintuitive, observations.
Image via PNAS
As much as 30 seconds before test subjects made a mistake, blood flow began to decrease in the regions of the brain associated with maintaining focus and task effort (labeled blue in the figure on the left). At the same time, activity began to increase in regions of the brain that are typically only active during periods of wakeful rest – regions that are usually kept deactivated during goal-oriented activity (labeled red in the figure on the left).